



# Evaluation and Assimilation of ATMS and CrIS at NCEP

Andrew Collard<sup>1</sup>, John Derber<sup>2</sup>, Yangrong Ling<sup>1</sup>, Jim Jung<sup>3</sup>, Yanqiu Zhu<sup>1</sup>, Li Bi<sup>1</sup>, Emily Liu<sup>4</sup>, Kristen Bathmann<sup>1</sup>

> <sup>1</sup>IMSG@NOAA/NCEP/EMC <sup>2</sup>Retired <sup>3</sup>Univ. of Wisconsin <sup>4</sup>SRG@NOAA/NCEP/EMC



#### Introduction



- Assimilation Configuration
- Data Quality
- Impact on Analysis
- Impact on Forecasts
- Summary and Next Steps





### **Assimilation Configuration**



### **Assimilation Configuration**



- For testing purposes, experiments were run at reduced resolution using the operational 4DEns-Var Hybrid GSI.
- Deterministic model resolution is T670 (operations is T1574).
- EnKF and analysis resolution is T254 (T574)
- The default (box-car ISRF) CRTM radiative transfer coefficients for ATMS are being used in this implementation.
  - Testing with coefficients using the measured ISRF is underway.
- After testing implementation was both in the operational global GFS and the pre-operational FV3-GFS parallel.





### **ATMS**

# NORA TOURSPHERIC ROMATO

# Striping Seems to be better



S-NPP Channel 10





## Spatial Averaging / Re-Mapping



- We use the AAPP FFT-based remapping code (described by Nigel Atkinson) to re-map (and in the process spatially average) the AMSU-A like ATMS channels to a common field of view (3.3°).
- This is to reduce the noise on the temperature sounding channels and also to allow the 5.2° FOV channels 1 and 2 to be consistent with the other AMSU-A like channels (as these are used for cloud-detection).
- Special attention has to be paid to missing and bad data as this will affect surrounding points in the re-mapped product.

# NORR PHERICADO STATISTICS OF STATISTICS OF STATISTICS

#### **Uncorrected Departure Stats**

WEATHE







### Monitoring Instrument Performance in the GSI



Our evaluation experiments start on 3<sup>rd</sup> March 2018.

Since that date observed-calculated statistics appear to be stable



#### **Observation Errors**

| S. M.          | Observation Errors                  |                       |  |
|----------------|-------------------------------------|-----------------------|--|
| ATMS Channel   | AMSU-A/MHS<br>NOAA-19 Obs Error (K) | ATMS Obs Error<br>(K) |  |
| 1              | 2.50                                | 5.00                  |  |
| 2              | 2.00                                | 5.00                  |  |
| <b>3</b> †     | 2.00                                | 5.00                  |  |
| 4              |                                     | 3.00                  |  |
| 5 <sup>†</sup> | 0.55                                | 0.55                  |  |
| 6              | 0.30                                | 0.40                  |  |
| 7              | 0.23                                | 0.40                  |  |
| 8†             | 0.23                                | 0.40                  |  |
| 9              | *0.25                               | 0.40                  |  |
| 10             | 0.25                                | 0.40                  |  |
| 11             | 0.35                                | 0.45                  |  |
| 12             | 0.40                                | 0.45                  |  |
| 13             | 0.55                                | 0.55                  |  |
| 14             | 0.80                                | 0.80                  |  |
| 15             | *3.00                               | *3.00                 |  |
| 16-22          | 2.50                                | 2.50                  |  |



\*Channel not used



**Analysis** 

#### Temperature Analysis Increments



RMS of GDAS Analysis Increments, Temp (K)
[00 06 12 18] Cycles, 00214Mar2018 ~ 18206Apr2018



-0.2 -0.1 -0.05 -0.01 -0.005 0.001 0.001 0.005 0.01 0.05



#### Wind Analysis Increments







**Analysis** 

#### **Relative Humidity Analysis Increments**



RMS of GDAS Analysis Increments, RH (%)
[00 06 12 18] Cycles, 00214Mar2018 ~ 18206Apr2018



0.6

-2.4 -1.2 -0.6 -0.12-0.06-0.0120.012 0.06 0.12



#### Background and Analysis Fit to Sondes



#### **Temperature**

#### Guess

**Analysis** 

Solid=Control
Dotted=Control
+ATMS\_N20

LH Curves=Bias RH Curves=RMS



merkground and

BRIE BRIE Analysis Fit to Sondes

#### **Specific Humidity**

#### **Guess**

**Analysis** 

Solid=Control **Dotted=Control +ATMS N20** 

LH Curves=Bias **RH Curves=RMS** 





#### Background and Analysis Fit to Sondes



#### **Vector Wind**

#### **Guess**

Analysis

Solid=Control
Dotted=Control
+ATMS\_N20

LH Curves=Bias RH Curves=RMS







### CrIS



## CrIS FSR 431 Channel Selection







#### **Uncorrected Departure Stats**







#### Bias-corrected Departure Stats







# Changes to observation errors and channel usage in FV3









### Forecast Impacts



## 500hPa Geopotential Height Anomaly Correlation Scores











### Tropical Vector Wind RMS Error Scores







**▼** NOAA-ZU Improves



### ATMS Summary and steps forward



- The initial quality of the ATMS data from NOAA-20 is comparable with/slightly improved relative to that from NPP.
- Small bias differences are removed through bias correction.
- Striping appears to be less of an issue compared to S-NPP.
- In assimilation experiments, analysis increments and fit-toobservations appear reasonable.
- Forecast impacts are neutral to slightly positive.
- For operational implementations, there are two configurations:
  - The current configuration (clear sky) was put into the global operational system on 30<sup>th</sup> May 2018
  - Cloudy radiance assimilation (affecting channels 1-6 and 16-22) is implemented in the FV3-Beta GFS to be run in parallel with the operational system



## CrIS Summary and steps forward



- The initial quality of the CrIS data from NOAA-20 is comparable or slightly better that from NPP.
- In assimilation experiments, analysis increments and fit-toobservations appear reasonable.
- Forecast impacts are mostly neutral.
- For operational implementations, there are two configurations:
  - The current configuration was put into the global operational system on 30<sup>th</sup>
     May 2018
  - The FV3-Beta GFS being run in parallel with the operational system has slightly more aggressive observation errors.
- Future work includes the introduction of cloudy radiances and correlated observation errors.